Source-free active domain adaptation (SFADA) enhances knowledge transfer from a source model to an unlabeled target domain using limited manual labels selected via active learning. While recent domain adaptation studies have introduced Vision-and-Language (ViL) models to improve pseudo-label quality or feature alignment, they often treat ViL-based and data supervision as separate sources, lacking effective fusion. To overcome this limitation, we propose Dual Active learning with Multimodal (DAM) foundation model, a novel framework that integrates multimodal supervision from a ViL model to complement sparse human annotations, thereby forming a dual supervisory signal. DAM initializes stable ViL-guided targets and employs a bidirectional distillation mechanism to foster mutual knowledge exchange between the target model and the dual supervisions during iterative adaptation. Extensive experiments demonstrate that DAM consistently outperforms existing methods and sets a new state-of-the-art across multiple SFADA benchmarks and active learning strategies.
翻译:暂无翻译