Source-free domain adaptation (SFDA) is a challenging task that tackles domain shifts using only a pre-trained source model and unlabeled target data. Existing SFDA methods are restricted by the fundamental limitation of source-target domain discrepancy. Non-generation SFDA methods suffer from unreliable pseudo-labels in challenging scenarios with large domain discrepancies, while generation-based SFDA methods are evidently degraded due to enlarged domain discrepancies in creating pseudo-source data. To address this limitation, we propose a novel generation-based framework named Diffusion-Driven Progressive Target Manipulation (DPTM) that leverages unlabeled target data as references to reliably generate and progressively refine a pseudo-target domain for SFDA. Specifically, we divide the target samples into a trust set and a non-trust set based on the reliability of pseudo-labels to sufficiently and reliably exploit their information. For samples from the non-trust set, we develop a manipulation strategy to semantically transform them into the newly assigned categories, while simultaneously maintaining them in the target distribution via a latent diffusion model. Furthermore, we design a progressive refinement mechanism that progressively reduces the domain discrepancy between the pseudo-target domain and the real target domain via iterative refinement. Experimental results demonstrate that DPTM outperforms existing methods by a large margin and achieves state-of-the-art performance on four prevailing SFDA benchmark datasets with different scales. Remarkably, DPTM can significantly enhance the performance by up to 18.6% in scenarios with large source-target gaps.


翻译:无源域适应(SFDA)是一项具有挑战性的任务,仅利用预训练的源模型和未标记的目标数据来处理域偏移。现有的SFDA方法受到源-目标域差异这一根本限制的约束。非生成式SFDA方法在域差异较大的挑战性场景中受限于不可靠的伪标签,而基于生成的SFDA方法则因在创建伪源数据时扩大的域差异而显著性能下降。为克服这一局限,我们提出了一种新颖的基于生成的框架,称为扩散驱动的渐进式目标操纵(DPTM),该框架利用未标记的目标数据作为参考,可靠地生成并逐步优化用于SFDA的伪目标域。具体而言,我们根据伪标签的可靠性将目标样本划分为可信集和非可信集,以充分且可靠地利用其信息。对于非可信集中的样本,我们开发了一种操纵策略,将其语义转换为新分配的类别,同时通过潜在扩散模型使其保持在目标分布中。此外,我们设计了一种渐进式优化机制,通过迭代优化逐步减小伪目标域与真实目标域之间的域差异。实验结果表明,DPTM大幅优于现有方法,并在四个不同规模的流行SFDA基准数据集上达到了最先进的性能。值得注意的是,在源-目标差距较大的场景中,DPTM能将性能显著提升高达18.6%。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
14+阅读 · 2020年1月27日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员