The Fisher information matrix provides a way to measure the amount of information given observed data based on parameters of interest. Many applications of the FIM exist in statistical modeling, system identification, and parameter estimation. We sometimes use the Monte Carlo-based method to estimate the FIM because its analytical form is often impossible or difficult to be computed in real-world models. In this paper, we review the basic method based on simultaneous perturbations and present an enhanced resampling-based method with independent simultaneous perturbations to estimate the Fisher information matrix. We conduct theoretical and numerical analysis to show its accuracy via variance reduction from $O(1/N)$ to $O(1/(nN))$, where $n$ is the sample size of the data and $N$ is a measure of the Monte Carlo averaging. We also consider the trade-off between accuracy and computational cost.


翻译:渔业信息矩阵提供了一种方法,用以衡量根据兴趣参数提供的观测数据的数量。FIM的许多应用在统计建模、系统识别和参数估计方面都存在。我们有时使用蒙特卡洛方法估算FIM,因为其分析形式往往不可能或难以在现实世界模型中计算。我们在本文件中审查了基于同时扰动的基本方法,并提出了一种强化的基于再采样的方法,同时进行独立的同步扰动,以估算渔业信息矩阵。我们进行理论和数字分析,通过从O(1/N)美元到$(1/(nN)美元)的差异来显示其准确性,即数据样本大小为10美元,而美元是蒙特卡洛平均值的一个尺度。我们还考虑了精确度与计算成本之间的权衡。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
111+阅读 · 2020年11月12日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
缺失数据统计分析,第三版,462页pdf
专知
47+阅读 · 2020年2月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
缺失数据统计分析,第三版,462页pdf
专知
47+阅读 · 2020年2月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员