We present a preliminary study on an end-to-end variational autoencoder (VAE) for sound morphing. Two VAE variants are compared: VAE with dilation layers (DC-VAE) and VAE only with regular convolutional layers (CC-VAE). We combine the following loss functions: 1) the time-domain mean-squared error for reconstructing the input signal, 2) the Kullback-Leibler divergence to the standard normal distribution in the bottleneck layer, and 3) the classification loss calculated from the bottleneck representation. On a database of spoken digits, we use 1-nearest neighbor classification to show that the sound classes separate in the bottleneck layer. We introduce the Mel-frequency cepstrum coefficient dynamic time warping (MFCC-DTW) deviation as a measure of how well the VAE decoder projects the class center in the latent (bottleneck) layer to the center of the sounds of that class in the audio domain. In terms of MFCC-DTW deviation and 1-NN classification, DC-VAE outperforms CC-VAE. These results for our parametrization and our dataset indicate that DC-VAE is more suitable for sound morphing than CC-VAE, since the DC-VAE decoder better preserves the topology when mapping from the audio domain to the latent space. Examples are given both for morphing spoken digits and drum sounds.


翻译:我们展示了用于音质变形的端到端变异自动读数器(VAE)的初步研究。两种VAE变量比较了:VAE与变相层(DC-VAE),VAE只与普通变相层(CC-VAE)比较。我们将以下损失函数组合在一起:1)重建输入信号的时间-偏差平均偏差,2)重塑输入信号的时间-偏差(VAE),2)Kullback-leeper对瓶头层标准正常分布的偏差,3)从瓶颈代表处计算出的分类损失。在语音数字代表处数据库中,我们使用1个最接近的声频邻居分类来显示瓶状层的音频类别(DC-VAE),我们引入了Mel-频 Cepstruum 系数动态时间扭曲(MFCC-DW)的偏差,以衡量VAE类中心在潜值层(bottnneck)到该类声音中心的中心。在MFCC-D-DW偏离和1NNUER 分类中, 显示我们的上层数据比DC-VAAFA值更适合的DC-VAA值。

0
下载
关闭预览

相关内容

专知会员服务
182+阅读 · 2020年11月23日
生成式对抗网络GAN异常检测
专知会员服务
115+阅读 · 2019年10月13日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
q-Space Novelty Detection with Variational Autoencoders
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员