Randomized smoothing is a recent technique that achieves state-of-art performance in training certifiably robust deep neural networks. While the smoothing family of distributions is often connected to the choice of the norm used for certification, the parameters of these distributions are always set as global hyper parameters independent from the input data on which a network is certified. In this work, we revisit Gaussian randomized smoothing and show that the variance of the Gaussian distribution can be optimized at each input so as to maximize the certification radius for the construction of the smooth classifier. Since the data dependent classifier does not directly enjoy sound certification with existing approaches, we propose a memory-enhanced data dependent smooth classifier that is certifiable by construction. This new approach is generic, parameter-free, and easy to implement. In fact, we show that our data dependent framework can be seamlessly incorporated into 3 randomized smoothing approaches, leading to consistent improved certified accuracy. When this framework is used in the training routine of these approaches followed by a data dependent certification, we achieve 9% and 6% improvement over the certified accuracy of the strongest baseline for a radius of 0.5 on CIFAR10 and ImageNet.


翻译:随机的平滑是最近的一种技术,在培训中取得最先进的业绩,可以证实是稳健的深神经网络。虽然分布的平滑式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式的分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月25日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员