It has been widely documented that the sampling and resampling steps in particle filters cannot be differentiated. The {\itshape reparameterisation trick} was introduced to allow the sampling step to be reformulated into a differentiable function. We extend the {\itshape reparameterisation trick} to include the stochastic input to resampling therefore limiting the discontinuities in the gradient calculation after this step. Knowing the gradients of the prior and likelihood allows us to run particle Markov Chain Monte Carlo (p-MCMC) and use the No-U-Turn Sampler (NUTS) as the proposal when estimating parameters. We compare the Metropolis-adjusted Langevin algorithm (MALA), Hamiltonian Monte Carlo with different number of steps and NUTS. We consider two state-space models and show that NUTS improves the mixing of the Markov chain and can produce more accurate results in less computational time.
翻译:广泛记载了粒子过滤器中的取样和再抽样步骤无法区分。 引入 ⁇ 形状重新校正技巧是为了允许将取样步骤重新改造成一种不同的功能。 我们扩展了 ⁇ 形状重新校正技巧, 以包括随机输入, 从而限制在这个步骤之后的梯度计算中的不连续性。 了解先前和可能性的梯度, 使我们能够运行颗粒 Markov 链 Monte Carlo (p- MC), 并在估算参数时使用无U- Turn采样器( NUTS ) 作为建议。 我们比较了大都会调整朗埃文算法(MALA) 、 汉密尔顿· 蒙特卡洛 以及 不同步骤和 NUTS 。 我们考虑两个州空间模型, 并显示 NUTS可以改善Markov 链的混合, 并且可以在较少的计算时间内产生更准确的结果 。