Moment retrieval in videos is a challenging task that aims to retrieve the most relevant video moment in an untrimmed video given a sentence description. Previous methods tend to perform self-modal learning and cross-modal interaction in a coarse manner, which neglect fine-grained clues contained in video content, query context, and their alignment. To this end, we propose a novel Multi-Granularity Perception Network (MGPN) that perceives intra-modality and inter-modality information at a multi-granularity level. Specifically, we formulate moment retrieval as a multi-choice reading comprehension task and integrate human reading strategies into our framework. A coarse-grained feature encoder and a co-attention mechanism are utilized to obtain a preliminary perception of intra-modality and inter-modality information. Then a fine-grained feature encoder and a conditioned interaction module are introduced to enhance the initial perception inspired by how humans address reading comprehension problems. Moreover, to alleviate the huge computation burden of some existing methods, we further design an efficient choice comparison module and reduce the hidden size with imperceptible quality loss. Extensive experiments on Charades-STA, TACoS, and ActivityNet Captions datasets demonstrate that our solution outperforms existing state-of-the-art methods. Codes are available at github.com/Huntersxsx/MGPN.


翻译:视频中的微调检索是一项具有挑战性的任务,目的是在一段未剪辑的视频中检索最相关的视频时刻,并配有一段句子描述。以往的方法倾向于以粗糙的方式进行自我现代学习和跨模式互动,忽视视频内容、查询背景及其对齐中所包含的细微感化线索。为此,我们提议建立一个新颖的多毛色感知网络(MGPN),在多毛质层面上感知内部和现代间信息。具体地说,我们将瞬间检索作为一种多种选择阅读理解任务,并将人类阅读战略纳入我们的框架中。我们进一步设计了一个高效选择比较模块,并使用一个共同感知机制来初步了解内部模式和模式间信息。然后引入一个微毛色感识感知和有条件互动模块,以加强人类如何解决阅读理解问题的初始感知力。此外,为了减轻某些现有方法的巨大计算负担,我们进一步设计了一个高效的选择比较模块,并减少隐藏的SDO-S-S-S-S-S-S-S-S-S-S-Cepvictor-A-S-S-S-A-D-D-D-D-S-S-S-S-S-S-S-D-A-D-S-S-S-A-D-A-S-S-S-D-D-D-D-D-S-A-A-S-S-S-S-S-A-A-S-A-A-D-A-A-A-A-A-D-D-A-A-D-A-D-D-D-D-A-A-D-D-D-D-D-D-A-A-A-D-A-A-D-A-A-A-A-A-A-A-A-A-A-D-A-A-A-A-A-A-A-A-C-C-C-D-D-A-D-D-D-D-A-A-A-A-A-A-A-A-A-A-D-A-A-A-A-A-A-A-A-A-A-A-A-A-D-A-A-A-A-A-D-A-A

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员