Bobkov, Houdr\'e, and the last author [2000] introduced a Poincar\'e-type functional parameter, $\lambda_\infty$, of a graph and related it to connectivity of the graph via Cheeger-type inequalities. A work by the second author, Raghavendra, and Vempala [2013] related the complexity of $\lambda_\infty$ to the so-called small-set expansion (SSE) problem and further set forth the desiderata for NP-hardness of this optimization problem. We confirm the conjecture that computing $\lambda_\infty$ is NP-hard for weighted trees. Beyond measuring connectivity in many applications we want to optimize it. This, via convex duality, leads to a problem in machine learning known as the Maximum Variance Embedding (MVE). The output is a function from vertices to a low dim Euclidean space, subject to bounds on Euclidean distances between neighbors. The objective is to maximize output variance. Special cases of MVE into $n$ and $1$ dims lead to absolute algebraic connectivity [1990] and spread constant [1998], that measure connectivity of the graph and its Cartesian $n$-power, respectively. MVE has other applications in measuring diffusion speed and robustness of networks, clustering, and dimension reduction. We show that computing MVE in tree-width dims is NP-hard, while only one additional dim beyond width of a given tree-decomposition makes the problem in P. We show that MVE of a tree in 2 dims defines a non-convex yet benign optimization landscape, i.e., local=global optima. We further develop a linear time combinatorial algorithm for this case. Finally, we denote approximate Maximum Variance Embedding is tractable in significantly lower dims. For trees and general graphs, for which Maximum Variance Embedding cannot be solved in less than $2$ and $\Omega(n)$ dims, we provide $1+\varepsilon$ approximation algorithms for embedding into $1$ and $O(\log n /\varepsilon^2)$ dims, respectively.
翻译:Bobkov, Houdr\'e, 以及最后一位作者 [2000] 引入了Poincar\'e型功能参数, $lambda\\\'infty$, 和一个图形的连通性。 第二作者, Raghavendra, 和 Vempala [2013] 的工作将美元的复杂性与所谓的小型扩张( SSE) 问题联系起来, 并进一步为这个优化问题引入了NP- 硬度。 我们确认计算 $=lambda\' infty 功能参数, 美元 美元- difatery$, 美元- diventyfty$, 美元- divental complia, 美元- 美元- 美元- dirental divility, 美元- 美元- 美元- 美元- deliversional dismodemodeal 和美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- demoxlal demodemodemodemodemodemodemodemodemodemodal demodemodemodal dal demodemodemodemodemode, la demodal demodal demodemodemodemodemodal,,, la demodemodemode, 和美元- 和美元- le dismodal 和美元- dismode, la la la de, la la la de, la de,, la la de, la la la la, la la la la la demodal demodal demodal demodal demode, le, la, la la la la la la, la, la la la la la la la la la la la la la la la la la la la