Grassmannian $\mathcal{G}_q(n,k)$ is the set of all $k$-dimensional subspaces of the vector space $\mathbb{F}_q^n.$ Recently, Etzion and Zhang introduced a new notion called covering Grassmannian code which can be used in network coding solutions for generalized combination networks. An $\alpha$-$(n,k,\delta)_q^c$ covering Grassmannian code $\mathcal{C}$ is a subset of $\mathcal{G}_q(n,k)$ such that every set of $\alpha$ codewords of $\mathcal{C}$ spans a subspace of dimension at least $\delta +k$ in $\mathbb{F}_q^n.$ In this paper, we derive new upper and lower bounds on the size of covering Grassmannian codes. These bounds improve and extend the parameter range of known bounds.
翻译:grassmannian $\ mathcal{G ⁇ q(n,k)$是矢量空间所有立方维空域的集合。 最近, Etzion 和 Zhang 引入了一个新的概念, 包括格拉斯曼代码, 可用于通用组合网络网络的网络编码解决方案。 覆盖格拉斯曼代码的$alpha$-$( k,\delta)_q ⁇ c$ mathcal{g{c} $\ mathcal{G ⁇ q(n,k)$ 的子集, 使每套 $\ alpha$ 的代码字( $\ mathb{C} $\ delta +k$ $\ mathb{F ⁇ q ⁇ n. $。 在本文中, 我们从覆盖格拉斯曼代码的大小中得出新的和较低的界限。 这些界限改进并扩大了已知界限的参数范围 。