Persistence landscapes are functional summaries of persistence diagrams designed to enable analysis of the diagrams using tools from functional data analysis. They comprise a collection of scalar functions such that birth and death times of topological features in persistence diagrams map to extrema of functions and intervals where they are non-zero. As a consequence, variation in persistence diagrams is encoded in both amplitude and phase components of persistence landscapes. Through functional data analysis of persistence landscapes, under an elastic Riemannian metric, we show how meaningful statistical summaries of persistence landscapes (e.g., mean, dominant directions of variation) can be obtained by decoupling their amplitude and phase variations. This decoupling is achieved via optimal alignment, with respect to the elastic metric, of the persistence landscapes. The estimated phase functions are tied to the resolution parameter that determines the filtration of simplicial complexes used to construct persistence diagrams. For a dataset obtained under geometric, scale and sampling variabilities, the phase function prescribes an optimal rate of increase of the resolution parameter for enhancing the topological signal in a persistence diagram. The proposed approach adds substantially to the statistical analysis of data objects with rich structure compared to past studies. In particular, we focus on two sets of data that have been analyzed in the past, brain artery trees and images of prostate cancer cells, and show that separation of amplitude and phase of persistence landscapes is beneficial in both settings.
翻译:持久性图案是持久性图案的功能性摘要,目的是利用功能性数据分析工具来分析图案,其中包括一系列标度函数的收集,例如,在耐性图案地图中,地形特征的出生和死亡时间,以延伸功能和间隔,结果,持久性图案的变异在持久性图案的振幅和阶段组成部分中都编码。根据弹性里伊曼尼度测量,通过对持久性图案的功能性数据分析,我们展示了如何通过分解其振幅和阶段变异性来获得关于持久性图案(例如,平均值、主要变异方向)的有意义的统计性摘要。通过优化对持久性图案的生成和死亡时间,通过持久性图案的弹性度测量和间隔图案的分解,通过优化的调整,通过对持久性图案的缩放时间进行分解。在高分辨率图案分析中,我们提出的分解图案的分解度参数显示,在高度图案分析中,在高度图案层图案分析中,我们提出的分层图案分析中的分解参数最优化,在高层图案分析中,我们分析的分级图案的分级图案的分解图案的分级图案的分级图案的分级图案显示。