Baker's technique is a powerful tool for designing polynomial-time approximation schemes, in particular for all optimization problems expressible in monotone first-order logic. However, it can only be used in rather restricted graph classes. We show that maximization problems expressible in monotone first-order logic admit PTAS under a much weaker assumption of fractional treewidth-fragility, and QPTAS on all hereditary classes with sublinear separators.
翻译:贝克的技术是设计多米时近似方案的有力工具, 特别是针对单调第一阶逻辑中可以表现的所有优化问题。 但是, 它只能用于相当限制性的图形类。 我们显示,单调第一阶逻辑中可以表现的最大化问题在小树枝易燃性这一假设下, 允许PTAS(PTAS) 和 QPTAS(QPTAS) 在所有遗传类中, 使用亚线性分离器, 以小树枝- 易燃性这一较弱的假设下, 接受 PTAS 。