Distribution shifts, which often occur in the real world, degrade the accuracy of deep learning systems, and thus improving robustness is essential for practical applications. To improve robustness, we study an image enhancement method that generates recognition-friendly images without retraining the recognition model. We propose a novel image enhancement method, AugNet, which is based on differentiable data augmentation techniques and generates a blended image from many augmented images to improve the recognition accuracy under distribution shifts. In addition to standard data augmentations, AugNet can also incorporate deep neural network-based image transformation, which further improves the robustness. Because AugNet is composed of differentiable functions, AugNet can be directly trained with the classification loss of the recognition model. AugNet is evaluated on widely used image recognition datasets using various classification models, including Vision Transformer and MLP-Mixer. AugNet improves the robustness with almost no reduction in classification accuracy for clean images, which is a better result than the existing methods. Furthermore, we show that interpretation of distribution shifts using AugNet and retraining based on that interpretation can greatly improve robustness.
翻译:分布变化通常发生在现实世界中, 降低深层学习系统的准确性, 从而提高稳健性是实用应用的关键。 为了提高稳健性, 我们研究一种图像增强方法, 在不对识别模型进行再培训的情况下生成识别友好图像。 我们提议一种新型图像增强方法, AugNet, 它基于不同的数据增强技术, 从许多放大图像中生成一种混合图像, 以提高分布转移过程中的识别准确性。 除了标准数据增强之外, AugNet还可以包含深神经网络图像转换, 从而进一步提高稳健性。 因为 AugNet 是由不同功能组成的, AugNet 可以直接接受识别模型分类损失培训。 AugNet 使用各种分类模型, 包括视野变异器和 MLP- Mixer, 对广泛使用的图像识别数据集进行评估。 AugNet 提高稳健性, 几乎不会降低清洁图像的分类准确性, 这比现有方法要好。 此外, 我们显示, 使用 AugNet 和基于该解释的再培训对分布变化的解释可以大大改进稳健性。