We present proofs of two new families of sum-product identities arising from the cylindric partitions paradigm. Most of the presented expressions, the related sum-product identities, and the ingredients for the proofs were first conjectured by Kanade-Russell in the spirit of Andrews-Schilling-Warnaar identities of the $A_2$ Rogers-Ramanujan type. We follow the footsteps of Kanade-Russell while we alter the computations heavily to accomplish our goals.
翻译:我们展示了两组由圆柱分割模式产生的新产品特性。 大部分表述、相关产品特性和证据的成分是卡纳德-鲁塞尔首先本着安德鲁斯-席林-瓦尔纳尔(Andrews-Schilling-Warnar)身份(Rogers-Ramanujan ) 的精神所推测的。 我们跟随卡纳德-罗瑟尔(Kanade-Russell)的脚步,同时我们大幅调整计算以达到我们的目标。