This paper presents a data-driven method for constructing a Koopman linear model based on the Direct Encoding (DE) formula. The prevailing methods, Dynamic Mode Decomposition (DMD) and its extensions are based on least squares estimates that can be shown to be biased towards data that are densely populated. The DE formula consisting of inner products of a nonlinear state transition function with observable functions does not incur this biased estimation problem and thus serves as a desirable alternative to DMD. However, the original DE formula requires knowledge of the nonlinear state equation, which is not available in many practical applications. In this paper, the DE formula is extended to a data-driven method, Data-Driven Encoding (DDE) of Koopman operator, in which the inner products are calculated from data taken from a nonlinear dynamic system. An effective algorithm is presented for the computation of the inner products, and their convergence to true values is proven. Numerical experiments verify the effectiveness of DDE compared to Extended DMD. The experiments demonstrate robustness to data distribution and the convergent properties of DDE, guaranteeing accuracy improvements with additional sample points. Furthermore, DDE is applied to deep learning of the Koopman operator to further improve prediction accuracy.


翻译:本文介绍了一种基于直接编码(DE)公式构建Koopman线性模型的数据驱动方法。通用方法、动态模式分解(DMD)及其扩展基于可显示偏向人口稠密数据的最小平方数估计值。由非线性国家过渡功能可观察功能的内产物组成的DE公式不会产生这种偏差估计问题,因此可作为DMD的可取的替代方法。然而,最初的DE公式需要了解非线性状态方程式,而在许多实际应用中并不具备。在本文中,DE公式扩展为数据驱动法,Koopman操作员的Data-Driven Encoding(DDE),其中从非线性动态系统获取的数据中计算内产物。为计算内性产品及其与真实值的趋同提供了有效的算法。数字实验验证了DDE与扩展 DMD的功效。实验显示数据分布的稳健性和DDE的趋同性,保证了数据精确性,并增加了抽样点。此外,KoDEman还应用了深层次的算法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
0+阅读 · 2023年3月8日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员