The modernization of the Common Agricultural Policy (CAP) requires the large scale and frequent monitoring of agricultural land. Towards this direction, the free and open satellite data (i.e., Sentinel missions) have been extensively used as the sources for the required high spatial and temporal resolution Earth observations. Nevertheless, monitoring the CAP at large scales constitutes a big data problem and puts a strain on CAP paying agencies that need to adapt fast in terms of infrastructure and know-how. Hence, there is a need for efficient and easy-to-use tools for the acquisition, storage, processing and exploitation of big satellite data. In this work, we present the Agriculture monitoring Data Cube (ADC), which is an automated, modular, end-to-end framework for discovering, pre-processing and indexing optical and Synthetic Aperture Radar (SAR) images into a multidimensional cube. We also offer a set of powerful tools on top of the ADC, including i) the generation of analysis-ready feature spaces of big satellite data to feed downstream machine learning tasks and ii) the support of Satellite Image Time-Series (SITS) analysis via services pertinent to the monitoring of the CAP (e.g., detecting trends and events, monitoring the growth status etc.). The knowledge extracted from the SITS analyses and the machine learning tasks returns to the data cube, building scalable country-specific knowledge bases that can efficiently answer complex and multi-faceted geospatial queries.
翻译:共同农业政策的现代化需要大规模和频繁地监测农业用地,为此,自由和开放的卫星数据(即哨兵任务)被广泛用作所需的高空间和时空分辨率地球观测的来源,然而,大规模监测联合呼吁程序构成一个大数据问题,给支付联合呼吁程序的机构带来压力,这些机构需要在基础设施和诀窍方面迅速适应。因此,需要为获取、储存、处理和利用大卫星数据提供高效和易于使用的工具。在这项工作中,我们通过服务介绍农业监测数据库(ADC),这是一个自动、模块化、端到端框架,用于发现、预处理和编制光学和合成雷达图像索引,并将其纳入一个多层面的构件。我们还在ADC顶端提供一套强有力的工具,包括建立可分析的大型卫星数据功能空间,为下游机层学习任务提供反馈,以及二)支持卫星图像时序(SITS)分析,这是一个自动、模块化、端到端框架框架,用于发现、预处理和索引和合成雷达图像图象图像,用于监测增长、系统动态的系统动态和图象分析。