Motivated by numerical modeling of ultrasound waves, we investigate robust conforming finite element discretizations of quasilinear and possibly nonlocal equations of Westervelt type. These wave equations involve either a strong dissipation or damping of fractional-derivative type and we unify them into one class by introducing a memory kernel that satisfies non-restrictive regularity and positivity assumptions. As the involved damping parameter is relatively small and can become negligible in certain (inviscid) media, it is important to develop methods that remain stable as the said parameter vanishes. To this end, the contributions of this work are twofold. First, we determine sufficient conditions under which conforming finite element discretizations of (non)local Westervelt equations can be made robust with respect to the dissipation parameter. Secondly, we establish the rate of convergence of the semi-discrete solutions in the singular vanishing dissipation limit. The analysis hinges upon devising appropriate energy functionals for the semi-discrete solutions that remain uniformly bounded with respect to the damping parameter.
翻译:本文受超声波波动的数值模拟启发,研究了Westervelt类型的拟线性和可能非局部方程的鲁棒一致有限元离散化。这些波动方程涉及克服分数导数强耗散或阻尼,我们通过引入具有非限制性正则性和正定性假设的记忆核将它们统一为一类。由于所涉及的阻尼参数相对较小,并在某些(无粘)介质中可以变得可以忽略,因此开发成为在所述参数消失时保持稳定性的方法非常重要。为此,本研究的贡献有两个。首先,我们确定了一些充分条件,使(非)局部Westervelt方程的一致有限元离散化具有鲁棒的阻尼参数。其次,在奇异的消失阻尼极限下,我们建立了半离散解的收敛速度。分析建立了半离散误差的适当的能量泛函,该能量泛函与阻尼参数相对稳定。