Contrary to other standard cameras, event cameras interpret the world in an entirely different manner; as a collection of asynchronous events. Despite event camera's unique data output, many event feature detection and tracking algorithms have shown significant progress by making detours to frame-based data representations. This paper questions the need to do so and proposes a novel event data-friendly method that achieve simultaneous feature detection and tracking, called event Clustering-based Detection and Tracking (eCDT). Our method employs a novel clustering method, named as k-NN Classifier-based Spatial Clustering and Applications with Noise (KCSCAN), to cluster adjacent polarity events to retrieve event trajectories.With the aid of a Head and Tail Descriptor Matching process, event clusters that reappear in a different polarity are continually tracked, elongating the feature tracks. Thanks to our clustering approach in spatio-temporal space, our method automatically solves feature detection and feature tracking simultaneously. Also, eCDT can extract feature tracks at any frequency with an adjustable time window, which does not corrupt the high temporal resolution of the original event data. Our method achieves 30% better feature tracking ages compared with the state-of-the-art approach while also having a low error approximately equal to it.
翻译:与其他标准摄像头相反,事件相机以完全不同的方式对世界进行解释;作为零星事件的收集。尽管事件相机独特的数据输出,许多事件特征探测和跟踪算法通过绕行到基于框架的数据表示方式显示出了显著的进展。本文提出需要这样做,并提出一种新的事件数据友好方法,实现同步特征探测和跟踪,称为“聚集式探测和跟踪”事件。我们的方法使用一种新型的集群方法,称为 k-NNNN 分类基础空间集群和应用(KCSCAN),将相邻的极地极地事件分组,以检索事件轨迹。在头和尾描述匹配过程的帮助下,在不同的极地重新出现的事件集群不断被跟踪,延长了地貌轨道。由于我们在时空阵列中的集群方法,我们的方法自动解决了同步特征探测和特征跟踪。此外,eCDT可以在任何频率上用可调整的时间窗口(KCSCAN)提取地段轨道,不会破坏原始事件的高时空分辨率,同时对原始事件的轨迹进行精确度跟踪。我们的方法也比了30年的状态,与低误差,我们的方法也实现了。