Graph colorings is a fundamental topic in graph theory that require an assignment of labels (or colors) to vertices or edges subject to various constraints. We focus on the harmonious coloring of a graph, which is a proper vertex coloring such that for every two distinct colors i, j at most one pair of adjacent vertices are colored with i and j. This type of coloring is edge-distinguishing and has potential applications in transportation network, computer network, airway network system. The results presented in this paper fall into two categories: in the first part of the paper we are concerned with the computational aspects of finding a minimum harmonious coloring and in the second part we determine the exact value of the harmonious chromatic number for some particular graphs and classes of graphs. More precisely, in the first part we show that finding a minimum harmonious coloring for arbitrary graphs is APX-hard, the natural greedy algorithm is a $\Omega(\sqrt{n})$-approximation, and, moreover, we show a relationship between the vertex cover and the harmonious chromatic number. In the second part we determine the exact value of the harmonious chromatic number for all 3-regular planar graphs of diameter 3, some non-planar regular graphs and cycle-related graphs.
翻译:图表颜色是图形理论中的一个基本主题, 需要将标签( 或颜色) 分配到受各种限制的顶端或边缘。 我们关注的是图表的和谐颜色, 图表的和谐颜色是适当的顶点颜色, 以两种不同的颜色 i, j 在大多数相邻的一对脊椎上都使用i 和 j 来颜色。 这种颜色类型是边缘分解, 具有在运输网络、 计算机网络、 航空网络系统中的潜在应用。 本文中显示的结果分为两类: 在文件的第一部分, 我们关注的是找到最小和谐颜色的计算方面, 在第二部分, 我们确定某些特定图表和图表类别中, 和谐的色素数字的准确值。 更准确地说, 在第一部分, 我们显示为任意图形找到最起码的和谐的颜色是 APX 硬的, 自然贪婪的算法是$\Omega( sqrt{n} $- approclationalation) 。 此外, 我们展示了一些与正态图的平面图的平面图层 3 和正态的平面图的图号之间的部分 。