We tackle the problem of tracking the human lower body as an initial step toward an automatic motion assessment system for clinical mobility evaluation, using a multimodal system that combines Inertial Measurement Unit (IMU) data, RGB images, and point cloud depth measurements. This system applies the factor graph representation to an optimization problem that provides 3-D skeleton joint estimations. In this paper, we focus on improving the temporal consistency of the estimated human trajectories to greatly extend the range of operability of the depth sensor. More specifically, we introduce a new factor graph factor based on Koopman theory that embeds the nonlinear dynamics of several lower-limb movement activities. This factor performs a two-step process: first, a custom activity recognition module based on spatial temporal graph convolutional networks recognizes the walking activity; then, a Koopman pose prediction of the subsequent skeleton is used as an a priori estimation to drive the optimization problem toward more consistent results. We tested the performance of this module on datasets composed of multiple clinical lowerlimb mobility tests, and we show that our approach reduces outliers on the skeleton form by almost 1 m, while preserving natural walking trajectories at depths up to more than 10 m.
翻译:作为向临床流动评估自动运动评估系统迈出的第一步,我们处理跟踪人类下体的问题,这是向临床流动评估自动运动评估系统迈出的第一步,我们采用了一个将惰性测量单位数据、RGB图像和点云深度测量结合起来的多式联运系统。这个系统将系数图表示用于一个提供三维骨骼联合估计的优化问题。在本文中,我们侧重于提高估计人类轨道的时间一致性,以大大扩大深度传感器的可操作性。更具体地说,我们根据Koopman理论引入一个新的要素图因子,将若干低平度移动活动的非线性动态嵌入其中。这个要素执行一个两步过程:首先,一个基于空间时图动态网络的定制活动识别模块,承认行走活动;然后,一个Koopman对随后的骨骼作出预测,作为将优化问题推向更一致的结果的预估。我们测试了这个模块的性能,该模块由多个临床低度移动性测试组成,我们显示我们的方法将骨骼外部的外部位缩小了近1米,同时保持自然行向更深处。