Robots can use auditory, visual, or haptic interfaces to convey information to human users. The way these interfaces select signals is typically pre-defined by the designer: for instance, a haptic wristband might vibrate when the robot is moving and squeeze when the robot stops. But different people interpret the same signals in different ways, so that what makes sense to one person might be confusing or unintuitive to another. In this paper we introduce a unified algorithmic formalism for learning co-adaptive interfaces from scratch. Our method does not need to know the human's task (i.e., what the human is using these signals for). Instead, our insight is that interpretable interfaces should select signals that maximize correlation between the human's actions and the information the interface is trying to convey. Applying this insight we develop LIMIT: Learning Interfaces to Maximize Information Transfer. LIMIT optimizes a tractable, real-time proxy of information gain in continuous spaces. The first time a person works with our system the signals may appear random; but over repeated interactions the interface learns a one-to-one mapping between displayed signals and human responses. Our resulting approach is both personalized to the current user and not tied to any specific interface modality. We compare LIMIT to state-of-the-art baselines across controlled simulations, an online survey, and an in-person user study with auditory, visual, and haptic interfaces. Overall, our results suggest that LIMIT learns interfaces that enable users to complete the task more quickly and efficiently, and users subjectively prefer LIMIT to the alternatives. See videos here: https://youtu.be/IvQ3TM1_2fA.
翻译:机器人可以用听觉、视觉或触觉界面向人类用户传递信息。这些界面选择信号的方式通常由设计者预定义:例如,触觉手环可能在机器人移动时震动,在机器人停止时挤压。但是,不同的人对相同的信号有不同的解释,因此对一个人有意义的内容对另一个人可能是令人困惑或难以理解的。在本文中,我们介绍了一种统一的算法形式,用于从头开始学习协同适应的人机交互界面。我们的方法不需要知道人类的任务(即,人类正在使用这些信号来做什么)。相反,我们的见解是可以通过选择最大化人类行为和界面尝试传达的信息之间的相关性的信号来选择可解释的界面。应用这一见解,我们开发了一个名为LIMIT(学习界面以最大化信息传输)的算法。LIMIT优化了连续空间中信息增益的可行的、实时的代理。第一次使用我们的系统时,信号可能会显得随机;但在反复交互过程中,界面可以学习到一个信号和人类反应之间的一一对应关系。我们得到的方法既个性化,也不局限于任何特定的界面形式。我们将LIMIT与受控模拟、在线调查以及具有听觉、视觉和触觉界面的面对面用户研究进行了比较。总体而言,我们的结果表明,LIMIT学习的界面使用户能够更快、更有效地完成任务,用户主观上也更喜欢LIMIT而不是其他选择。 视频请参见:https://youtu.be/IvQ3TM1_2fA。