Score-based generative modeling, informally referred to as diffusion models, continue to grow in popularity across several important domains and tasks. While they provide high-quality and diverse samples from empirical distributions, important questions remain on the reliability and trustworthiness of these sampling procedures for their responsible use in critical scenarios. Conformal prediction is a modern tool to construct finite-sample, distribution-free uncertainty guarantees for any black-box predictor. In this work, we focus on image-to-image regression tasks and we present a generalization of the Risk-Controlling Prediction Sets (RCPS) procedure, that we term $K$-RCPS, which allows to $(i)$ provide entrywise calibrated intervals for future samples of any diffusion model, and $(ii)$ control a certain notion of risk with respect to a ground truth image with minimal mean interval length. Differently from existing conformal risk control procedures, ours relies on a novel convex optimization approach that allows for multidimensional risk control while provably minimizing the mean interval length. We illustrate our approach on two real-world image denoising problems: on natural images of faces as well as on computed tomography (CT) scans of the abdomen, demonstrating state of the art performance.
翻译:非正式地称为扩散模型的基于分数的基因模型,在几个重要领域和任务中继续日益受到欢迎。虽然它们提供了来自经验分布的高质量和多样性样本,但对于这些取样程序的可靠性和可靠性,对于在关键情景中负责任地使用这些取样程序的可靠性和可靠性,仍然存在重要问题。非正式的预测是一个现代工具,用来为任何黑盒预测器建立有限的抽样,不使用分发的不确定性保障。在这项工作中,我们侧重于图像到图像回归的任务,我们提出了风险控制预测数据集(RCPS)程序的一般化,我们使用美元-RCPS,允许为今后任何扩散模型的样本提供入门校准间隔,而美元则控制着某种风险概念,其中间长度最小。不同于现有的一致的风险控制程序,我们依靠一种新的convex优化方法,允许多层面的风险控制,同时可以将平均间隔长度缩小。我们用两种真实世界图像解析问题的方式:关于脸部的自然图像,以及图像的扫描和状态。我们用这种方法演示了图像的状态。