Equipping current decision-making tools with notions of fairness, equitability, or other ethically motivated outcomes, is one of the top priorities in recent research efforts in machine learning, AI, and optimization. In this paper, we investigate how to allocate limited resources to {locally interacting} communities in a way to maximize a pertinent notion of equitability. In particular, we look at the dynamic setting where the allocation is repeated across multiple periods (e.g., yearly), the local communities evolve in the meantime (driven by the provided allocation), and the allocations are modulated by feedback coming from the communities themselves. We employ recent mathematical tools stemming from data-driven feedback online optimization, by which communities can learn their (possibly unknown) evolution, satisfaction, as well as they can share information with the deciding bodies. We design dynamic policies that converge to an allocation that maximize equitability in the long term. We further demonstrate our model and methodology with realistic examples of healthcare and education subsidies design in Sub-Saharian countries. One of the key empirical takeaways from our setting is that long-term equitability is fragile, in the sense that it can be easily lost when deciding bodies weigh in other factors (e.g., equality in allocation) in the allocation strategy. Moreover, a naive compromise, while not providing significant advantage to the communities, can promote inequality in social outcomes.
翻译:以公平、公平或其他道德驱动的结果为当前决策工具提供公平、公平或其他道德驱动结果的概念,是最近在机器学习、AI和优化方面的研究工作的最优先事项之一。在本文件中,我们调查如何将有限的资源分配给[本地互动}社区,以便最大限度地扩大一个相关的公平概念。我们特别要看看动态环境,在这种环境中,分配在多个时期(例如,每年)重复,地方社区同时演变(由提供的分配驱动),分配由社区本身的反馈加以调整。我们使用最近由数据驱动的在线反馈优化产生的数学工具,使社区能够学习其(可能未知的)演变、满意度以及他们可以与决策机构分享信息。我们设计了动态政策,使分配在长期(例如,每年)间重复分配;我们进一步展示了我们的模式和方法,在次萨赫勒国家,保健和教育补贴设计有现实的范例;从我们所处的背景中汲取的主要经验之一是,长期的公平性是在线反馈,社区可以学习(可能未知的)进化的进化、满意度以及满意度,以及他们可以与决策机构共享的信息。我们设计了动态政策,在长期的平等性分配中可以轻松地衡量,在社会分配中可以使机构获得重大的平等性,同时,在判断其分配中可以轻重度上可以使机构在度上获得。