We describe two Monte Carlo algorithms for sampling from the integrated posterior distributions of a range of Bayesian mixture models. Both algorithms allow us to directly sample not only the assignment of observations to components but also the number of components, thereby fitting the model and performing model selection over the number of components in a single computation. The first algorithm is a traditional collapsed Gibbs sampler, albeit with an unusual move-set; the second builds on the first, adding rejection-free sampling from the prior over component assignments, to create an algorithm that has excellent mixing time in typical applications and outperforms current state-of-the-art methods, in some cases by a wide margin. We demonstrate our methods with a selection of applications to latent class analysis.
翻译:暂无翻译