LP-duality theory has played a central role in the study of the core, right from its early days to the present time. However, despite the extensive nature of this work, basic gaps still remain. We address these gaps using the following building blocks from LP-duality theory: \begin{enumerate} \item Total unimodularity (TUM). \item Complementary slackness conditions and strict complementarity. \end{enumerate} Our exploration of TUM leads to defining new games, characterizing their cores and giving novel ways of using core imputations to enforce constraints that arise naturally in applications of these games. The latter include: \begin{enumerate} \item Efficient algorithms for finding {\em min-max fair and max-min fair core imputations}. \item {\em Encouraging diversity and avoiding over-representation} in a generalization of the assignment game. \end{enumerate} Complementarity enables us to prove new properties of core imputations of the assignment game and its generalizations.
翻译:LP- 质量理论在核心研究中发挥了中心作用, 从最初几天到现在。 但是, 尽管这项工作具有广泛性质, 基本差距仍然存在。 我们利用LP- 质量理论中的以下构件来弥补这些差距:\ begin{ nualate} \ croit Total untimolarity (TUM) 。\ ite 补充性松懈条件和严格的互补性 。\ end{ numberate} 我们对 TUM的探索导致定义新游戏, 描述其核心特征, 并提供新的方法, 利用核心估算来实施这些游戏应用中自然产生的限制。 后者包括:\ begin{ numberate}\ 用于查找 min-max 公平 和 最大- max 公平核心精度的集成算法 。\ \ em em 鼓励多样性和避免过度代表性的项目 。\ end{ number] 补充性使我们能够证明指派游戏及其一般性的核心精度的特性的新特性 。</s>