Open-set panoptic segmentation (OPS) problem is a new research direction aiming to perform segmentation for both \known classes and \unknown classes, i.e., the objects ("things") that are never annotated in the training set. The main challenges of OPS are twofold: (1) the infinite possibility of the \unknown object appearances makes it difficult to model them from a limited number of training data. (2) at training time, we are only provided with the "void" category, which essentially mixes the "unknown thing" and "background" classes. We empirically find that directly using "void" category to supervise \known class or "background" without screening will not lead to a satisfied OPS result. In this paper, we propose a divide-and-conquer scheme to develop a two-stage decision process for OPS. We show that by properly combining a \known class discriminator with an additional class-agnostic object prediction head, the OPS performance can be significantly improved. Specifically, we first propose to create a classifier with only \known categories and let the "void" class proposals achieve low prediction probability from those categories. Then we distinguish the "unknown things" from the background by using the additional object prediction head. To further boost performance, we introduce "unknown things" pseudo-labels generated from up-to-date models and a heuristic rule to enrich the training set. Our extensive experimental evaluation shows that our approach significantly improves \unknown class panoptic quality, with more than 30\% relative improvements than the existing best-performed method.
翻译:开放光谱分割( OPS) 问题是一个新的研究方向, 旨在对已知的班级和未知的班级进行分解, 也就是说, 在培训集中从未加注的对象( “ 东西” ) 。 OPS的主要挑战有双重:(1) 未知对象外观的无限可能性使得很难用数量有限的培训数据来模拟它们。 (2) 在培训时间, 我们只能使用“ 避免” 类, 基本上将“ 未知的东西” 和“ 背地” 类混为一谈。 我们从实验中发现, 直接使用“ 避免” 类来监督已知的班级或“ 背地”, 没有筛选也不会导致满意的 OPS 结果。 在本论文中, 我们提出一个分化和共进化方案, 为OPS开发一个两阶段的决策过程。 我们通过适当结合一个已知的阶级歧视者, 以及一个额外的等级的物体预测头, OPS的表现可以大大改进。 具体地说, 我们首先建议创建一个分类员, 只有已知的分类类别, 来监管已知的班级的班级的班级的班级的改进, 以及“ 明显地显示我们所认识的“ 改进的“ ” 改进的“ 改进的“ 增加的” 评估的 的 的“ 质量” 。