Camera gimbal systems are important in various air or water borne systems for applications such as navigation, target tracking, security and surveillance. A higher steering rate (rotation angle per second) of gimbal is preferable for real-time applications since a given field-of-view (FOV) can be revisited within a short period of time. However, due to relative motion between the gimbal and scene during the exposure time, the captured video frames can suffer from motion blur. Since most of the post-capture applications require blurfree images, motion deblurring in real-time is an important need. Even though there exist blind deblurring methods which aim to retrieve latent images from blurry inputs, they are constrained by very high-dimensional optimization thus incurring large execution times. On the other hand, deep learning methods for motion deblurring, though fast, do not generalize satisfactorily to different domains (e.g., air, water, etc). In this work, we address the problem of real-time motion deblurring in infrared (IR) images captured by a gimbal-based system. We reveal how a priori knowledge of the blur-kernel can be used in conjunction with non-blind deblurring methods to achieve real-time performance. Importantly, our mathematical model can be leveraged to create large-scale datasets with realistic gimbal motion blur. Such datasets which are a rarity can be a valuable asset for contemporary deep learning methods. We show that, in comparison to the state-of-the-art techniques in deblurring, our method is better suited for practical gimbal-based imaging systems.


翻译:相机 gimbal 系统在各种空气或水载系统中对于导航、目标跟踪、安保和监视等应用系统十分重要。 Gimbal 的更高指导率( 每秒旋转角度)对于实时应用来说更为可取,因为可以在短期内对特定视野领域(FOV)进行重新审视。然而,由于Gimbal和场景在接触期间的相对运动,所捕捉到的视频框架可能会因运动模糊而受到影响。由于捕获后的大多数应用都需要模糊的图像,实时的移动模糊是一个重要的需要。即使存在旨在从模糊输入中检索潜影图像的盲点模糊方法,但它们受到非常高的维度优化的限制,从而造成大量执行时间。另一方面,运动变形的深层学习方法虽然速度不快,但却无法向不同领域(如空气、水等)推广。在这项工作中,我们可以解决红外线(IR) 图像的实时变形变色移动问题。即使存在盲分解方法,但是在基于 gimbil 的模型系统中,我们如何用前期的数学方法来显示,这种变蓝的变现方法是如何在使用。

0
下载
关闭预览

相关内容

信息检索杂志(IR)为信息检索的广泛领域中的理论、算法分析和实验的发布提供了一个国际论坛。感兴趣的主题包括对应用程序(例如Web,社交和流媒体,推荐系统和文本档案)的搜索、索引、分析和评估。这包括对搜索中人为因素的研究、桥接人工智能和信息检索以及特定领域的搜索应用程序。 官网地址:https://dblp.uni-trier.de/db/journals/ir/
专知会员服务
45+阅读 · 2020年12月4日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】SfM-Net:从视频中学习结构和运动
泡泡机器人SLAM
9+阅读 · 2018年5月29日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
1+阅读 · 2022年1月26日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】SfM-Net:从视频中学习结构和运动
泡泡机器人SLAM
9+阅读 · 2018年5月29日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员