Large Language Models (LLMs) have demonstrated superior performance in various natural language processing tasks. Meanwhile, they require extensive training data, raising concerns related to dataset copyright protection. Backdoor-based watermarking is a viable approach to protect the copyright of classification datasets. However, these methods may introduce malicious misclassification behaviors into watermarked LLMs by attackers and also affect the semantic information of the watermarked text. To address these issues, we propose FunctionMarker, a novel copyright protection method for language datasets via knowledge injection. FunctionMarker enables LLMs to learn specific knowledge through fine-tuning on watermarked datasets, and we can extract the embedded watermark by obtaining the responses of LLMs to specific knowledge-related queries. Considering watermark capacity and stealthness, we select customizable functions as specific knowledge for LLMs to learn and embed the watermark into them. Moreover, FunctionMarker can embed multi-bit watermarks while preserving the original semantic information, thereby increasing the difficulty of adaptive attacks. We take mathematical functions as an instance to evaluate the effectiveness of FunctionMarker, and experiments show that only 0.3% of watermarked text achieves a 90% watermark extraction accuracy in most cases, validating our method's effectiveness.
翻译:暂无翻译