The behaviors of deep neural networks (DNNs) are notoriously resistant to human interpretations. In this paper, we propose Hypergradient Data Relevance Analysis, or HYDRA, which interprets the predictions made by DNNs as effects of their training data. Existing approaches generally estimate data contributions around the final model parameters and ignore how the training data shape the optimization trajectory. By unrolling the hypergradient of test loss w.r.t. the weights of training data, HYDRA assesses the contribution of training data toward test data points throughout the training trajectory. In order to accelerate computation, we remove the Hessian from the calculation and prove that, under moderate conditions, the approximation error is bounded. Corroborating this theoretical claim, empirical results indicate the error is indeed small. In addition, we quantitatively demonstrate that HYDRA outperforms influence functions in accurately estimating data contribution and detecting noisy data labels. The source code is available at https://github.com/cyyever/aaai_hydra_8686.


翻译:深神经网络(DNNS)的行为是对人类解释的强烈抵制。 在本文中,我们提出超梯度数据相关性分析,即九头蛇,将DNS的预测解释为其培训数据的效果。现有方法一般估计最终模型参数的数据贡献,忽视培训数据如何影响优化轨道。通过释放测试损失的高度梯度,HYDRA评估培训数据在整个培训轨迹中对测试数据点的贡献。为了加快计算,我们将Hesian人从计算中除名,并证明在中度条件下近似错误是受约束的。对这项理论主张进行校验,实验结果表明错误确实很小。此外,我们量化地证明,HYDRA在准确估算数据贡献和探测噪音数据标签方面超越了功能。源代码见https://github.com/cyyever/aai_hyya_866。

0
下载
关闭预览

相关内容

【WSDM2021-Ttutorial】深度学习异常检测,111页ppt
专知会员服务
154+阅读 · 2021年3月10日
【NeurIPS 2020】图神经网络GNN架构设计
专知会员服务
84+阅读 · 2020年11月19日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
已删除
将门创投
8+阅读 · 2019年8月28日
深度神经网络压缩和加速相关最全资源分享
深度学习与NLP
3+阅读 · 2019年7月5日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
VIP会员
相关资讯
已删除
将门创投
8+阅读 · 2019年8月28日
深度神经网络压缩和加速相关最全资源分享
深度学习与NLP
3+阅读 · 2019年7月5日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员