Existing Deep Learning frameworks exclusively use either Parameter Server(PS) approach or MPI parallelism. In this paper, we discuss the drawbacks of such approaches and propose a generic framework supporting both PS and MPI programming paradigms, co-existing at the same time. The key advantage of the new model is to embed the scaling benefits of MPI parallelism into the loosely coupled PS task model. Apart from providing a practical usage model of MPI in cloud, such framework allows for novel communication avoiding algorithms that do parameter averaging in Stochastic Gradient Descent(SGD) approaches. We show how MPI and PS models can synergestically apply algorithms such as Elastic SGD to improve the rate of convergence against existing approaches. These new algorithms directly help scaling SGD clusterwide. Further, we also optimize the critical component of the framework, namely global aggregation or allreduce using a novel concept of tensor collectives. These treat a group of vectors on a node as a single object allowing for the existing single vector algorithms to be directly applicable. We back our claims with sufficient emperical evidence using large scale ImageNet 1K data. Our framework is built upon MXNET but the design is generic and can be adapted to other popular DL infrastructures.
翻译:现有深层次学习框架只使用参数服务器(PS) 方法或 MPI 平行法。 在本文中, 我们讨论这些方法的缺点, 并提议一个支持 PS 和 MPI 编程模式的通用框架, 两者同时存在。 新模式的主要优势是将MPI 平行法的扩大效益嵌入松散、 连带的 PS 任务模式。 除了在云中提供 MPI 实际使用模型外, 这样的框架还允许采用新型的通信避免算法, 以Stochastic Gradient Emple(SGD) 方法中平均参数。 我们展示了这种方法的缺点, 并提出了支持 PSS 和 PS 模式的通用框架, 以同步方式应用 Elastic SGD 等算法, 以提高现有方法的趋同率。 这些新的算法直接帮助将 SGD 群集集成。 此外, 我们还优化了框架的关键组成部分, 即全球聚合或组合使用 高压集体的新概念。 这些框架将一组矢量作为单一对象, 允许现有单一矢量矢量算法直接适用。 我们的索赔, 以足够的内置证据性证据证据证据证据支持我们 设计MX 。