Though pre-trained language models such as Bert and XLNet, have rapidly advanced the state-of-the-art on many NLP tasks, they implicit semantics only relying on surface information between words in corpus. Intuitively, background knowledge influences the efficacy of understanding. Inspired by this common sense, we focus on improving model pretraining by leveraging explicit knowledge. Different from recent research that optimize pretraining model by knowledge masking strategies, we propose a simple but general method to combine explicit knowledge with pretraining. To be specific, we first match knowledge facts from knowledge graph (KG) and then add a knowledge injunction layer to transformer directly without changing its architecture. The present study seeks to find the direct impact of explicit knowledge on transformer per-training. We conduct experiments on various datasets for different downstream tasks. The experimental results show that solely by adding external knowledge to transformer can improve the learning performance on many NLP tasks.
翻译:尽管诸如Bert和XLNet等经过事先训练的语言模型已经在许多NLP任务上迅速发展了最新水平,但是它们只是依靠在文中字词之间的表面信息来暗示语义学。 直观地说,背景知识影响理解的功效。 受这种常识的启发,我们注重通过利用明确的知识来改进模型预培训。 不同于最近通过知识掩码战略优化预培训模型的研究,我们提出了一个简单而一般的方法,将明确的知识与预培训结合起来。 具体地说,我们首先将知识图(KG)中的知识事实匹配起来,然后在不改变其结构的情况下将知识强制层直接添加到变压器中。 本研究试图找到对变压器每部培训的明确知识的直接影响。 我们在不同的下游任务中进行各种数据集实验。 实验结果显示,只有将外部知识添加到变压器上,才能改善许多NLP任务的学习绩效。