All existing backdoor attacks to deep learning (DL) models belong to the vertical class backdoor (VCB). That is, any sample from a class will activate the implanted backdoor in the presence of the secret trigger, regardless of source-class-agnostic or source-class-specific backdoor. Current trends of existing defenses are overwhelmingly devised for VCB attacks especially the source-class-agnostic backdoor, which essentially neglects other potential simple but general backdoor types, thus giving false security implications. It is thus urgent to discover unknown backdoor types. This work reveals a new, simple, and general horizontal class backdoor (HCB) attack. We show that the backdoor can be naturally bounded with innocuous natural features that are common and pervasive in the real world. Note that an innocuous feature (e.g., expression) is irrelevant to the main task of the model (e.g., recognizing a person from one to another). The innocuous feature spans across classes horizontally but is exhibited by partial samples per class -- satisfying the horizontal class (HC) property. Only when the trigger is concurrently presented with the HC innocuous feature, can the backdoor be effectively activated. Extensive experiments on attacking performance in terms of high attack success rates with tasks of 1) MNIST, 2) facial recognition, 3) traffic sign recognition, and 4) object detection demonstrate that the HCB is highly efficient and effective. We extensively evaluate the HCB evasiveness against a (chronologically) series of 9 influential countermeasures of Fine-Pruning (RAID 18'), STRIP (ACSAC 19'), Neural Cleanse (Oakland 19'), ABS (CCS 19'), Februus (ACSAC 20'), MNTD (Oakland 21'), SCAn (USENIX SEC 21'), MOTH (Oakland 22'), and Beatrix (NDSS 23'), where none of them can succeed even when a simplest trigger is used.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
12+阅读 · 2019年2月26日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
Arxiv
76+阅读 · 2022年3月26日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
12+阅读 · 2019年2月26日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员