Processing very large graphs like social networks, biological and chemical compounds is a challenging task. Distributed graph processing systems process the billion-scale graphs efficiently but incur overheads of efficient partitioning and distribution of the graph over a cluster of nodes. Distributed processing also requires cluster management and fault tolerance. In order to overcome these problems GraphChi was proposed recently. GraphChi significantly outperformed all the representative distributed processing frameworks. Still, we observe that GraphChi incurs some serious degradation in performance due to 1) high number of non-sequential I/Os for processing every chunk of graph; and 2) lack of true parallelism to process the graph. In this paper we propose a simple yet powerful engine BiShard Parallel Processor (BPP) to efficiently process billions-scale graphs on a single PC. We extend the storage structure proposed by GraphChi and introduce a new processing model called BiShard Parallel (BP). BP enables full CPU parallelism for processing the graph and significantly reduces the number of non-sequential I/Os required to process every chunk of the graph. Our experiments on real large graphs show that our solution significantly outperforms GraphChi.
翻译:处理社交网络、生物和化学化合物等大型图表是一项艰巨的任务。 分布式图表处理系统高效地处理十亿比例图,但对于在一组节点上有效分割和分布图却产生间接的间接费用。 分布式处理也需要群集管理和差错容忍度。 为了解决这些问题, 最近提出了GreatChi 。 图形化精度大大优于所有代表性分布式处理框架。 我们还观察到, 图形化精度在性能方面造成了一些严重退化, 原因是:(1) 处理每一块图所需的非序列 I/ O 数量很多;和(2) 缺乏处理图所需的真实的平行性。 在本文中, 我们提议一个简单而有力的引擎 BiShard平行处理器(BPPP) 来高效处理单一电脑上的数十亿比例图。 我们扩展了GreaphChi 提议的存储结构, 并引入了名为 Bishard 平行处理的新处理模型。 BPP为处理图表提供了完全的CPU平行性, 并大大减少了处理每一块图所需的非序列 I/ O 数量。 我们在实际大图表上的实验显示我们的解决方案。