We consider two laminar incompressible flows coupled by the continuous law at a fixed interface. We approach the system by one that satisfies a friction Navier law, and we show that when the friction coefficient goes to infinity, the solutions converges to a solution of the initial system. We then write a numerical Schwarz-like coupling algorithm and run 2D-simulations, that yields same convergence result.
翻译:我们认为,两个百万年的不可压缩流动加上固定界面的连续法。我们用一个满足摩擦的纳维埃法的系统来接近这个系统,我们证明,当摩擦系数达到无限时,解决方案会汇合到最初系统的解决方案。然后我们写出一个数字式的Schwarz式的混合算法,运行2D模拟,产生相同的趋同结果。