This work investigates the performance of intelligent reflective surfaces (IRSs) assisted uplink non-orthogonal multiple access (NOMA) in energy-constrained networks. Specifically, we formulate and solve two optimization problems, one for minimizing the users' sum transmit power and another for maximizing the energy efficiency (EE) of the system. The two problems are solved by jointly optimizing the users' transmit powers and the passive beamforming coefficients at the IRS reflectors subject to the users' individual uplink rate constraints. A novel algorithm is developed to optimize the IRS passive beamforming coefficients by optimizing the objective function over the \textit{complex circle manifold} (CCM), exploiting the manifold optimization technique. The proposed manifold optimization-based solution is bench-marked against the rather \textit{standard} semi-definite relaxation method (SDR). The results show that the manifold optimization-based algorithm achieves significantly better performance for both transmit power minimization and EE maximization problems at a computational complexity lower than the SDR approach. The results also reveal that IRS-NOMA is superior to the orthogonal multiple access (OMA) counterpart only when the users' target achievable rate requirements are relatively high.
翻译:这项工作调查了受能源限制的网络中智能反射表面(IRS)协助的非横向多存(NOMA)的性能。 具体地说, 我们制定和解决两个优化问题, 一个是最大限度地减少用户的电源, 另一个是最大限度地提高系统能效。 这两个问题通过共同优化用户的传输能力和受用户个人上链接速率制约的IRS反射器的被动波形成形系数来解决。 开发了一种新算法,以优化在\ textit{complex room} (CCM) (CM) 上的目标功能,优化IRS的被动波形变系数。 开发了两个优化两个优化优化优化的问题, 一个是最大限度地减少用户的传输能力,另一个是最大限度地提高系统的能效。 拟议的基于多种优化的多元解决方案是相对于相当的\textit{stand} 半非定型放松制方法(SDR) 。 结果显示,基于多种优化的算法在计算复杂性低于特别提款权办法的情况下,在传输权力最小化和EEE最大化问题上都取得了显著的性。 结果还显示, IRS- NOMA只有在相对的用户具有较高可实现的进入目标率时, 。