Quadratic unconstrained binary optimization (QUBO) solvers can be applied to design an optimal structure to avoid resonance. QUBO algorithms that work on a classical or quantum device have succeeded in some industrial applications. However, their applications are still limited due to the difficulty of transforming from the original optimization problem to QUBO. Recently, black-box optimization (BBO) methods have been proposed to tackle this issue using a machine learning technique and a Bayesian treatment for combinatorial optimization. We employed the BBO methods to design a printed circuit board for resonance avoidance. This design problem is formulated to maximize natural frequency and simultaneously minimize the number of mounting points. The natural frequency, which is the bottleneck for the QUBO formulation, is approximated to a quadratic model in the BBO method. We demonstrated that BBO using a factorization machine shows good performance in both the calculation time and the success probability of finding the optimal solution. Our results can open up QUBO solvers' potential for other applications in structural designs.
翻译:用于设计最佳结构以避免共振的二次优化( QUBO) 解算器可用于设计最佳结构以避免共振。 用于古典或量子装置的QUBO算法在一些工业应用中取得了成功。 但是,由于从原始优化问题转变为QUBO的困难,它们的应用仍然有限。 最近,提出了黑箱优化( BBBO) 方法来解决这个问题,它使用了机器学习技术和组合优化的巴伊斯处理方法。 我们使用BBO方法设计了一个印刷电路板来避免共振。 这个设计问题是为了尽量增加自然频率,同时尽量减少加固点的数量。 自然频率是QUBO配方的瓶盖,与BBO方法中的四极模型相近。 我们证明,使用计数机器的BOO在计算时间和找到最佳解决方案的成功概率方面表现良好。 我们的结果可以打开QUBO解算器在结构设计中的其他应用潜力。