Supervised learning of every possible pathology is unrealistic for many primary care applications like health screening. Image anomaly detection methods that learn normal appearance from only healthy data have shown promising results recently. We propose an alternative to image reconstruction-based and image embedding-based methods and propose a new self-supervised method to tackle pathological anomaly detection. Our approach originates in the foreign patch interpolation (FPI) strategy that has shown superior performance on brain MRI and abdominal CT data. We propose to use a better patch interpolation strategy, Poisson image interpolation (PII), which makes our method suitable for applications in challenging data regimes. PII outperforms state-of-the-art methods by a good margin when tested on surrogate tasks like identifying common lung anomalies in chest X-rays or hypo-plastic left heart syndrome in prenatal, fetal cardiac ultrasound images. Code available at https://github.com/jemtan/PII.
翻译:对健康筛查等许多初级保健应用而言,监督地了解每一种可能的病理学是不现实的。从健康数据中了解正常外观的图像异常检测方法最近显示了令人乐观的结果。我们建议了一种替代基于图像重建和图像嵌入方法的替代方法,并提出了解决病理异常检测的新的自我监督方法。我们的方法源于外国补丁内插(FPI)战略,该战略在脑部MRI和腹部CT数据方面表现优异。我们提议采用更好的补丁内插战略,即Poisson图像内插(PII),它使我们的方法适合在挑战数据系统中的应用。 PII在试验替代任务时,如在产前、胎儿心脏超声波图像中发现常见的X射线或低塑性左心综合症时,优于最先进的方法。代码见https://github.com/jemtan/PII。