The evolution and release of fission gas impacts the performance of UO2 nuclear fuel. We have created a Bayesian framework to calibrate a novel model for fission gas transport that predicts diffusion rates of uranium and xenon in UO2 under both thermal equilibrium and irradiation conditions. Data sets are taken from historical diffusion, gas release, and thermodynamic experiments. These data sets consist invariably of summary statistics, including a measurement value with an associated uncertainty. Our calibration strategy uses synthetic data sets in order to estimate the parameters in the model, such that the resulting model predictions agree with the reported summary statistics. In doing so, the reported uncertainties are effectively reflected in the inferred uncertain parameters. Furthermore, to keep our approach computationally tractable, we replace the fission gas evolution model by a polynomial surrogate model with a reduced number of parameters, which are identified using global sensitivity analysis. We discuss the efficacy of our calibration strategy, and investigate how the contribution of the different data sets, taken from multiple sources in the literature, can be weighted in the likelihood function constructed as part of our Bayesian calibration setup, in order to account for the different number of data points in each set of data summaries. Our results indicate a good match between the calibrated diffusivity and non-stoichiometry predictions and the given data summaries. We demonstrate a good agreement between the calibrated xenon diffusivity and the established fit from Turnbull et al. (1982), indicating that the dominant uranium vacancy diffusion mechanism in the model is able to capture the trends in the data.
翻译:裂变气体的进化和释放影响二氧化铀核燃料的性能。 我们创建了一个贝耶斯框架,以校准裂变气体运输的新模式,在热平衡和辐照条件下预测二氧化二氧化铀铀铀的铀扩散率;数据集来自历史扩散、气体释放和热动力实验。这些数据组总是由简要统计组成,包括测量值和相关不确定性的测量值。我们的校准战略使用合成数据集来估计模型中的参数,从而使由此产生的模型预测与报告的简要统计数据相一致。为此,所报告的不确定性有效地反映在推断的不确定趋势中。此外,为了保持我们的方法在计算上可移动性,我们用一个多核化的代金化模型取代裂变气体模型,使用全球敏感度分析确定的减少参数数。我们讨论了校准战略的功效,并研究了从多种文献来源获得的不同数据集的贡献,如何在作为我们贝伊西亚校准数据集集的一部分而构建的可能性函数中进行加权。为了在我们的精确度校准的准确性模型中说明我们各项数据的精确度和精确度的精确度数据中,我们为每个数据的精确度的精确度和精确度的精确度的精确度的精确度的精确度,在我们的精确度数据中,在我们的精确度和精确度的精确度的每个数据中显示的精确度的精确度的精确度的精确度的每个数据中,将显示的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的计算。