The evolution and release of fission gas impacts the performance of UO2 nuclear fuel. We have created a Bayesian framework to calibrate a novel model for fission gas transport that predicts diffusion rates of uranium and xenon in UO2 under both thermal equilibrium and irradiation conditions. Data sets are taken from historical diffusion, gas release, and thermodynamic experiments. These data sets consist invariably of summary statistics, including a measurement value with an associated uncertainty. Our calibration strategy uses synthetic data sets in order to estimate the parameters in the model, such that the resulting model predictions agree with the reported summary statistics. In doing so, the reported uncertainties are effectively reflected in the inferred uncertain parameters. Furthermore, to keep our approach computationally tractable, we replace the fission gas evolution model by a polynomial surrogate model with a reduced number of parameters, which are identified using global sensitivity analysis. We discuss the efficacy of our calibration strategy, and investigate how the contribution of the different data sets, taken from multiple sources in the literature, can be weighted in the likelihood function constructed as part of our Bayesian calibration setup, in order to account for the different number of data points in each set of data summaries. Our results indicate a good match between the calibrated diffusivity and non-stoichiometry predictions and the given data summaries. We demonstrate a good agreement between the calibrated xenon diffusivity and the established fit from Turnbull et al. (1982), indicating that the dominant uranium vacancy diffusion mechanism in the model is able to capture the trends in the data.


翻译:裂变气体的进化和释放影响二氧化铀核燃料的性能。 我们创建了一个贝耶斯框架,以校准裂变气体运输的新模式,在热平衡和辐照条件下预测二氧化二氧化铀铀铀的铀扩散率;数据集来自历史扩散、气体释放和热动力实验。这些数据组总是由简要统计组成,包括测量值和相关不确定性的测量值。我们的校准战略使用合成数据集来估计模型中的参数,从而使由此产生的模型预测与报告的简要统计数据相一致。为此,所报告的不确定性有效地反映在推断的不确定趋势中。此外,为了保持我们的方法在计算上可移动性,我们用一个多核化的代金化模型取代裂变气体模型,使用全球敏感度分析确定的减少参数数。我们讨论了校准战略的功效,并研究了从多种文献来源获得的不同数据集的贡献,如何在作为我们贝伊西亚校准数据集集的一部分而构建的可能性函数中进行加权。为了在我们的精确度校准的准确性模型中说明我们各项数据的精确度和精确度的精确度数据中,我们为每个数据的精确度的精确度和精确度的精确度的精确度的精确度的精确度,在我们的精确度数据中,在我们的精确度和精确度的精确度的每个数据中显示的精确度的精确度的精确度的精确度的每个数据中,将显示的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的计算。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员