We study the problem of recovering the structure underlying large Gaussian graphical models or, more generally, partial correlation graphs. In high-dimensional problems it is often too costly to store the entire sample covariance matrix. We propose a new input model in which one can query single entries of the covariance matrix. We prove that it is possible to recover the support of the inverse covariance matrix with low query and computational complexity. Our algorithms work in a regime when this support is represented by tree-like graphs and, more generally, for graphs of small treewidth. Our results demonstrate that for large classes of graphs, the structure of the corresponding partial correlation graphs can be determined much faster than even computing the empirical covariance matrix.


翻译:我们研究的是恢复大型高斯图形模型或更一般而言部分相关图表背后的结构的问题。在高维问题中,存储整个样本共变矩阵往往费用太高。我们提出了一个新的输入模型,在这个模型中,人们可以查询共变矩阵的单项内容。我们证明有可能以低查询和计算复杂性来恢复反常变矩阵的支持。当这种支持以树形图为代表时,我们的算法在一种制度下运作,而这种支持则以小树形图为代表,更一般地说来,以小树形图为代表。我们的结果表明,对于大类图表而言,相应的部分相关图形的结构可以比计算经验共变矩阵的速度要快得多。

0
下载
关闭预览

相关内容

在概率论和统计学中,协方差矩阵(也称为自协方差矩阵,色散矩阵,方差矩阵或方差-协方差矩阵)是平方矩阵,给出了给定随机向量的每对元素之间的协方差。 在矩阵对角线中存在方差,即每个元素与其自身的协方差。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning latent causal graphs via mixture oracles
Arxiv
0+阅读 · 2021年6月29日
Arxiv
0+阅读 · 2021年6月27日
Arxiv
0+阅读 · 2021年6月27日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2018年8月27日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Learning latent causal graphs via mixture oracles
Arxiv
0+阅读 · 2021年6月29日
Arxiv
0+阅读 · 2021年6月27日
Arxiv
0+阅读 · 2021年6月27日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2018年8月27日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员