The success of deep neural networks (DNNs) in real-world applications has benefited from abundant pre-trained models. However, the backdoored pre-trained models can pose a significant trojan threat to the deployment of downstream DNNs. Existing DNN testing methods are mainly designed to find incorrect corner case behaviors in adversarial settings but fail to discover the backdoors crafted by strong trojan attacks. Observing the trojan network behaviors shows that they are not just reflected by a single compromised neuron as proposed by previous work but attributed to the critical neural paths in the activation intensity and frequency of multiple neurons. This work formulates the DNN backdoor testing and proposes the CatchBackdoor framework. Via differential fuzzing of critical neurons from a small number of benign examples, we identify the trojan paths and particularly the critical ones, and generate backdoor testing examples by simulating the critical neurons in the identified paths. Extensive experiments demonstrate the superiority of CatchBackdoor, with higher detection performance than existing methods. CatchBackdoor works better on detecting backdoors by stealthy blending and adaptive attacks, which existing methods fail to detect. Moreover, our experiments show that CatchBackdoor may reveal the potential backdoors of models in Model Zoo.


翻译:在现实世界应用中,深神经网络的成功得益于大量预先培训的模型。然而,后门预先培训的模型可能对下游DNN的部署构成巨大的天体威胁。现有的DNN测试方法主要是为了在对立环境中发现不正确的角落案例行为,但未能发现由强烈的Trojan攻击所形成的后门。观察Trojan网络行为表明,它们不仅被先前工作所提议的单一受损神经系统所反映,而且归因于多个神经神经元激活强度和频率中的关键神经路径。这项工作设计DNN后门测试并提出CacBackdoor框架。从少数良性例子中发现关键神经元的差别模糊,我们确定Trojan路径,特别是关键路径,并通过模拟所确定的路径中的关键神经元产生后门测试实例。广泛的实验表明CatchBackdoor的优势,比现有方法要高。CatchBackdoor在通过隐性混合和适应性袭击后门的后门测试方面做得更好。Chackdoor工作通过隐型的混合和适应性实验来探测后门的后门,此外,我们现有的方法也未能探测出捕捉到后门的模型。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
158+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Adaptive Synthetic Characters for Military Training
Arxiv
45+阅读 · 2021年1月6日
Arxiv
14+阅读 · 2020年10月26日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员