In this paper, we introduce adaptive neuron enhancement (ANE) method for the best least-squares approximation using two-layer ReLU neural networks (NNs). For a given function f(x), the ANE method generates a two-layer ReLU NN and a numerical integration mesh such that the approximation accuracy is within the prescribed tolerance. The ANE method provides a natural process for obtaining a good initialization which is crucial for training nonlinear optimization problems. Numerical results of the ANE method are presented for functions of two variables exhibiting either intersecting interface singularities or sharp interior layers.
翻译:在本文中,我们采用了适应性神经元增强法(ANE),用于使用双层 ReLU神经网络(NNs)进行最佳最小直方近似。对于给定函数 f(x),ANE方法产生双层RELU NN 和数字集成网格,使近似准确性在规定的容度范围内。ANE方法为获得良好的初始化提供了自然过程,这对培训非线性优化问题至关重要。ANE方法的数值结果用于显示交叉界面奇数或尖锐内层的两个变量的功能。