Complex networks are common in physics, biology, computer science, and social science. Quantifying the relations between complex networks paves the way for understanding the latent information shared across networks. However, fundamental metrics of relations, such as information divergence, mutual information, Fisher information, and causality, are not well-defined between complex networks. As a compromise, commonly used strategies (e.g., network embedding, matching, and kernel approaches) measure network relations in data-driven ways. These approaches are computation-oriented and inapplicable to analytic derivations in mathematics and physics. To resolve these issues, we present a theory to derive an optimal characterization of network topological properties. Our theory shows that a complex network can be fully represented by a Gaussian Markov random field defined by the discrete Schr\"{o}dinger operator, which simultaneously satisfies desired smoothness and maximum entropy properties. Based on this characterization, we can analytically measure diverse relations between networks in terms of topology properties. As illustrations, we primarily show how to define encoding (e.g., information divergence and mutual information), decoding (e.g., Fisher information), and causality (e.g., transfer entropy and Granger causality) between complex networks. We validate our framework on representative complex networks (e.g., evolutionary random network models, protein-protein interaction network, and chemical compound networks), and demonstrate that a series of science and engineering challenges (e.g., network evolution, clustering, and classification) can be tackled from a new perspective. A computationally efficient implementation of our theory is released as an open-source toolbox.


翻译:复杂的网络在物理、生物学、计算机科学和社会科学中是常见的。 量化复杂网络之间的关系为理解跨网络共享的潜在信息铺平了道路。 然而,复杂的网络之间并没有明确界定基本的关系度量,例如信息差异、相互信息、渔业信息和因果关系等。 作为一种妥协,通常使用的战略(例如网络嵌入、匹配和内核方法)测量数据驱动的网络关系。 这些方法面向计算,并且不适用于数学和物理学的分析数据。 为解决这些问题,我们提出了一个理论,以得出网络地形特性的最佳特征。 我们的理论表明,由离散的Schr\"{o}dinger 操作者定义的高斯马可随机字段随机的网络可以充分代表复杂的网络。 作为一种妥协,通常使用的战略(例如网络嵌入、匹配和内心力方法)测量数据驱动的网络关系。 基于这种特征,我们可以分析地貌学特性的网络之间的复杂关系。 解说,我们的主要方法是如何定义(例如, 信息差异和内部网络 ) 、 和不断变化的网络( ) 以及不断变化的网络的网络 、 和不断变化工具。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员