Identifying dynamical systems from experimental data is a notably difficult task. Prior knowledge generally helps, but the extent of this knowledge varies with the application, and customized models are often needed. We propose a flexible framework to incorporate a broad spectrum of physical insight into neural ODE-based system identification, giving physical interpretability to the resulting latent space. This insight is either enforced through hard constraints in the optimization problem or added in its cost function. In order to link the partial and possibly noisy observations to the latent state, we rely on tools from nonlinear observer theory to build a recognition model. We demonstrate the performance of the proposed approach on numerical simulations and on an experimental dataset from a robotic exoskeleton.
翻译:从实验数据中确定动态系统是一项特别困难的任务。 先前的知识通常有帮助,但这种知识的范围随应用而不同,而且往往需要定制模型。 我们提议一个灵活的框架,将广泛的物理洞察纳入神经内线基于代码的系统识别,给由此产生的潜在空间提供物理解释性。这种洞察力要么通过优化问题中的严格限制加以实施,要么增加成本功能。为了将部分和可能吵闹的观测与潜伏状态联系起来,我们依靠非线性观察理论的工具来构建一个识别模型。我们展示了关于数字模拟和机器人外骨骼的实验数据集的拟议方法的绩效。