The renaissance of artificial neural networks was catalysed by the success of classification models, tagged by the community with the broader term supervised learning. The extraordinary results gave rise to a hype loaded with ambitious promises and overstatements. Soon the community realised that the success owed much to the availability of thousands of labelled examples and supervised learning went, for many, from glory to shame: Some criticised deep learning as a whole and others proclaimed that the way forward had to be alternatives to supervised learning: predictive, unsupervised, semi-supervised and, more recently, self-supervised learning. However, all these seem brand names, rather than actual categories of a theoretically grounded taxonomy. Moreover, the call to banish supervised learning was motivated by the questionable claim that humans learn with little or no supervision and are capable of robust out-of-distribution generalisation. Here, we review insights about learning and supervision in nature, revisit the notion that learning and generalisation are not possible without supervision or inductive biases and argue that we will make better progress if we just call it by its name.


翻译:由社区以更宽广的有监督的学习术语标记的分类模型的成功促进了人工神经网络的复兴,社区用更宽广的有监督的学习标记了分类模型的成功。非同寻常的结果导致了充满雄心勃勃的承诺和多言多语的杂语。社区很快意识到,成功在很大程度上归功于数千个有标签的例子和有监督的学习,对许多人来说,从荣耀到羞耻:一些批评性的深刻学习整体而言,还有其他人宣称,前进的道路必须替代有监督的学习:预测性、不受监督、半监督的、以及最近的自我监督的学习。然而,所有这些似乎都是品牌的名字,而不是理论上基于理论的分类学的实际类别。此外,呼吁禁止受监督的学习,其动机是令人怀疑的说法,即人类在很少或根本没有监督的情况下学习,而且能够强有力地超越分布的概括化。在这里,我们回顾关于自然的学习和监督的洞察力,重新审视没有监督或直观的偏见是不可能进行学习和概括的理念,并争论说,如果我们只是称呼它,我们就会取得更好的进展。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
126+阅读 · 2019年11月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年8月22日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
5+阅读 · 2020年10月2日
Arxiv
126+阅读 · 2020年9月6日
Arxiv
22+阅读 · 2019年11月24日
Incremental Reading for Question Answering
Arxiv
5+阅读 · 2019年1月15日
Learning From Positive and Unlabeled Data: A Survey
Arxiv
5+阅读 · 2018年11月12日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
126+阅读 · 2019年11月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Top
微信扫码咨询专知VIP会员