As complex machine learning models are increasingly used in sensitive applications like banking, trading or credit scoring, there is a growing demand for reliable explanation mechanisms. Local feature attribution methods have become a popular technique for post-hoc and model-agnostic explanations. However, attribution methods typically assume a stationary environment in which the predictive model has been trained and remains stable. As a result, it is often unclear how local attributions behave in realistic, constantly evolving settings such as streaming and online applications. In this paper, we discuss the impact of temporal change on local feature attributions. In particular, we show that local attributions can become obsolete each time the predictive model is updated or concept drift alters the data generating distribution. Consequently, local feature attributions in data streams provide high explanatory power only when combined with a mechanism that allows us to detect and respond to local changes over time. To this end, we present CDLEEDS, a flexible and model-agnostic framework for detecting local change and concept drift. CDLEEDS serves as an intuitive extension of attribution-based explanation techniques to identify outdated local attributions and enable more targeted recalculations. In experiments, we also show that the proposed framework can reliably detect both local and global concept drift. Accordingly, our work contributes to a more meaningful and robust explainability in online machine learning.


翻译:由于复杂的机器学习模式越来越多地用于银行、交易或信用评分等敏感应用,对可靠解释机制的需求日益增加。当地特性归属方法已成为热后和模型不可知解释的流行技术。然而,归因方法通常假定一种固定环境,预测模型经过培训并保持稳定。因此,往往不清楚当地特性如何在流流和在线应用等现实、不断演变的环境中发挥作用。本文讨论了时间变化对当地特性归属的影响。特别是,我们表明,每次预测模型更新或概念漂移改变数据生成分布,当地特性归属方法就会过时。因此,数据流中的当地特性归属只有在与一个机制相结合,使我们能够探测和应对当地变化的情况下,才能提供很高的解释性力量。为此,我们提出了CDLEEDS,一个用于探测当地变化和概念漂移的灵活和模型性框架。CDLEEDS作为基于归属的解释技术的直观延伸,用以识别过时的当地特性,并使更有针对性的重新计算能够改变数据的分布。因此,在实验中,我们还可以可靠地、更可靠地、更可靠地解释一个在线学习的系统框架。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月18日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员