Multi-agent pathfinding (MAPF) remains a critical problem in robotics and autonomous systems, where agents must navigate shared spaces efficiently while avoiding conflicts. Traditional centralized algorithms that have global information, such as Conflict-Based Search (CBS), provide high-quality solutions but become computationally expensive in large-scale scenarios due to the combinatorial explosion of conflicts that need resolution. Conversely, distributed approaches that have local information, particularly learning-based methods, offer better scalability by operating with relaxed information availability, yet often at the cost of solution quality. To address these limitations, we propose a hybrid framework that combines decentralized path planning with a lightweight centralized coordinator. Our framework leverages reinforcement learning (RL) for decentralized planning, enabling agents to adapt their planning based on minimal, targeted alerts--such as static conflict-cell flags or brief conflict tracks--that are dynamically shared information from the central coordinator for effective conflict resolution. We empirically study the effect of the information available to an agent on its planning performance. Our approach reduces the inter-agent information sharing compared to fully centralized and distributed methods, while still consistently finding feasible, collision-free solutions--even in large-scale scenarios having higher agent counts.
翻译:暂无翻译