For servers incorporating parallel computing resources, batching is a pivotal technique for providing efficient and economical services at scale. Parallel computing resources exhibit heightened computational and energy efficiency when operating with larger batch sizes. However, in the realm of online services, the adoption of a larger batch size may lead to longer response times. This paper aims to provide a dynamic batching scheme that delicately balances latency and efficiency. The system is modeled as a batch service queue with size-dependent service times. Then, the design of dynamic batching is formulated as a semi-Markov decision process (SMDP) problem, with the objective of minimizing the weighted sum of average response time and average power consumption. A method is proposed to derive an approximate optimal SMDP solution, representing the chosen dynamic batching policy. By introducing an abstract cost to reflect the impact of "tail" states, the space complexity and the time complexity of the procedure can decrease by 63.5% and 98%, respectively. Numerical results showcase the superiority of SMDP-based batching policies across various parameter setups. Additionally, the proposed scheme exhibits noteworthy flexibility in balancing power consumption and latency.
翻译:暂无翻译