A sweep-cover is a vertex separator in trees that covers all the nodes by some ancestor-descendent relationship. This work provides an algorithm for finding all sweep-covers of a given size in any tree. The algorithm's complexity is proven on a class of infinite $\Delta$-ary trees with constant path lengths between the $\Delta$-star internal nodes. I prove the enumeration expression on these infinite trees is a recurrence relation of functional compositions on ordered integer partitions. The upper bound on the enumeration is analyzed with respect to the size of sweep cover $n$, maximum out-degree $\Delta$ of the tree, and path length $\gamma$, $O(n^n)$, $O(\Delta^c c^\Delta)$, and $O(\gamma ^n)$ respectively. I prove that the Raney numbers are a strict lower bound for enumerating sweep-covers on infinite $\Delta$-ary trees, $\Omega(\frac{(\Delta n)^n}{n!})$.


翻译:扫描覆盖在树上的顶部分隔器, 它覆盖了所有由某种祖先- 后代关系覆盖的节点。 这项工作提供了一种算法, 用于查找任何树中某一大小的所有扫描覆盖器。 算法的复杂性在一定的 $\ Delta$- ary 树类上得到证明, 其路径长度在$\ Delta$- Star 内部节点之间是恒定的。 我证明了这些无穷树的查点表达式是定购整形分区的功能构成的复现关系。 查点的上层被分析的是扫描覆盖的大小$, 树的最大外度$\ Delta$, 路径长度$\ gamma$, $( nn), $( delta ⁇ c c ⁇ ) $( $) 和 $O( gomma) 。 我证明 Raney 数字对于计算无限的 $\ Delta$- rary 树的扫描覆盖线, $\\\\\\\\ n@ n! $\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
深度神经网络压缩和加速相关最全资源分享
深度学习与NLP
3+阅读 · 2019年7月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月15日
Random and quasi-random designs in group testing
Arxiv
0+阅读 · 2021年1月15日
Arxiv
0+阅读 · 2021年1月15日
Arxiv
0+阅读 · 2021年1月14日
Design and Analysis of Switchback Experiments
Arxiv
0+阅读 · 2021年1月14日
VIP会员
相关资讯
深度神经网络压缩和加速相关最全资源分享
深度学习与NLP
3+阅读 · 2019年7月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员