This is the second paper in a series in which we develop machine learning (ML) moment closure models for the radiative transfer equation (RTE). In our previous work \cite{huang2021gradient}, we proposed an approach to directly learn the gradient of the unclosed high order moment, which performs much better than learning the moment itself and the conventional $P_N$ closure. However, the ML moment closure model in \cite{huang2021gradient} is not able to guarantee hyperbolicity and long time stability. We propose in this paper a method to enforce the global hyperbolicity of the ML closure model. The main idea is to seek a symmetrizer (a symmetric positive definite matrix) for the closure system, and derive constraints such that the system is globally symmetrizable hyperbolic. It is shown that the new ML closure system inherits the dissipativeness of the RTE and preserves the correct diffusion limit as the Knunsden number goes to zero. Several benchmark tests including the Gaussian source problem and the two-material problem show the good accuracy, long time stability and generalizability of our globally hyperbolic ML closure model.
翻译:这是一系列文件中的第二份文件, 我们在这个系列中为辐射传输方程式开发机器学习( ML) 时间关闭模式。 在我们先前的工作 \ cite{ huang2021gradient} 中, 我们提出了一个直接学习未关闭高顺序时刻梯度的方法, 这种方法比学习时间本身和常规的$P_ N美元关闭要好得多。 但是, 在\ cite{ huang2021gradient} 中的 ML 时间关闭模式无法保证超偏向性和长期时间稳定。 我们在此文件中提出了一个执行 ML 关闭模式全球双向性的方法 。 主要的想法是为关闭系统寻找一个对称性( 对称正正确定矩阵), 并找出制约性, 因为这个系统是全球性的对称性超偏移。 显示新的 ML 关闭模式继承了 RTE 的分解性, 并保留了 Knunsden 数字到零时的正确扩散限制 。 一些基准测试, 包括高比源问题和全球双基稳定性模型 。