Collecting and aggregating information from several probability measures or histograms is a fundamental task in machine learning. One of the popular solution methods for this task is to compute the barycenter of the probability measures under the Wasserstein metric. However, approximating the Wasserstein barycenter is numerically challenging because of the curse of dimensionality. This paper proposes the projection robust Wasserstein barycenter (PRWB) that has the potential to mitigate the curse of dimensionality. Since PRWB is numerically very challenging to solve, we further propose a relaxed PRWB (RPRWB) model, which is more tractable. The RPRWB projects the probability measures onto a lower-dimensional subspace that maximizes the Wasserstein barycenter objective. The resulting problem is a max-min problem over the Stiefel manifold. By combining the iterative Bregman projection algorithm and Riemannian optimization, we propose two new algorithms for computing the RPRWB. The complexity of arithmetic operations of the proposed algorithms for obtaining an $\epsilon$-stationary solution is analyzed. We incorporate the RPRWB into a discrete distribution clustering algorithm, and the numerical results on real text datasets confirm that our RPRWB model helps improve the clustering performance significantly.


翻译:收集并汇总来自若干概率措施或直方图的信息是机器学习的一项根本任务。 最受欢迎的方法之一是根据瓦西斯坦标准计算瓦西斯坦标准下概率措施的中位值。 但是,由于维度的诅咒,几乎瓦西斯坦中位值在数字上具有挑战性。 本文建议预测强大的瓦西斯坦中标(Wasserstein中标)具有减轻维度诅咒的潜力。 由于PRWB在数字上极具挑战性,我们进一步提议一个较易移动的放松的PRWB(RPRWB)模式。 RPRB将概率措施投放到一个低维度的子空间上,使瓦西斯坦中位值目标最大化。 由此产生的问题是Stefel的极限问题。 通过将反复的Bregman预测算法和Riemannian最优化结合起来,我们提出了两种新的算法。 我们进一步分析了为获得$\epsilon-statal溶液而提议的算法的复杂性。 RPRWB将概率投算法投算法投影到一个真正的RPRM 。 我们大幅地确认了我们的IMF IMF IMBSBSBA 。

0
下载
关闭预览

相关内容

维度灾难是指在高维空间中分析和组织数据时出现的各种现象,这些现象在低维设置(例如日常体验的三维物理空间)中不会发生。
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
0+阅读 · 2021年9月15日
Arxiv
6+阅读 · 2018年3月12日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员