The proposed method re-frames traditional inverse problems of electrocardiography into regression problems, constraining the solution space by decomposing signals with multidimensional Gaussian impulse basis functions. Impulse HSPs were generated with single Gaussian basis functions at discrete heart surface locations and projected to corresponding BSPs using a volume conductor torso model. Both BSP (inputs) and HSP (outputs) were mapped to regular 2D surface meshes and used to train a neural network. Predictive capabilities of the network were tested with unseen synthetic and experimental data. A dense full connected single hidden layer neural network was trained to map body surface impulses to heart surface Gaussian basis functions for reconstructing HSP. Synthetic pulses moving across the heart surface were predicted from the neural network with root mean squared error of $9.1\pm1.4$%. Predicted signals were robust to noise up to 20 dB and errors due to displacement and rotation of the heart within the torso were bounded and predictable. A shift of the heart 40 mm toward the spine resulted in a 4\% increase in signal feature localization error. The set of training impulse function data could be reduced and prediction error remained bounded. Recorded HSPs from in-vitro pig hearts were reliably decomposed using space-time Gaussian basis functions. Predicted HSPs for left-ventricular pacing had a mean absolute error of $10.4\pm11.4$ ms. Other pacing scenarios were analyzed with similar success. Conclusion: Impulses from Gaussian basis functions are potentially an effective and robust way to train simple neural network data models for reconstructing HSPs from decomposed BSPs. The HSPs predicted by the neural network can be used to generate activation maps that non-invasively identify features of cardiac electrical dysfunction and can guide subsequent treatment options.


翻译:拟议的方法将传统的心电图反向问题重新定位为回归问题,通过以多维高斯脉冲基础功能将信号分解,限制解决方案空间。在离散的心脏表面位置,用单高斯基功能生成了脉冲加速器,并用体积导导体透光度模型预测到相应的BSP。BSP(输入)和HSP(输出值)都映射到正常的 2D 表面介质,并用于训练神经网络。网络的预测能力通过隐蔽的合成和实验数据测试。一个密密全连接的单层绝对神经网络被训练成将身体表面脉冲映射到心脏表面的Gaus基功能重建HSP。从神经网络的合成脉冲脉冲脉冲预测出9.1\pm1.4美分方元。预测信号可以坚固到20 dB,由于心脏迁移和旋转而出现错误。40毫米的心电流直径直线脉冲神经网络向直径直径直径直径方向移动方向转换40毫米方向,通过直径直径直径直径直径直径直径直径的螺路路路路路路路路路路路机机变。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
专知会员服务
25+阅读 · 2021年4月13日
专知会员服务
60+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Msfvenom 常用生成 Payload 命令
黑白之道
9+阅读 · 2019年2月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Msfvenom 常用生成 Payload 命令
黑白之道
9+阅读 · 2019年2月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员